A comparative study of the inhibitory effects by caffeic acid, catechins and their related compounds on the generation of radicals in the reaction mixture of linoleic acid with iron ions

نویسندگان

  • Yuji Matsui
  • Yoshie Tanaka
  • Hideo Iwahashi
چکیده

Caffeic acid and (+)-catechin, which are abundantly contained in coffee and tea, are typical polyphenols. In order to know the relative magnitudes of antioxidant activity, effects by caffeic acid, (+)-catechin and their derivatives on the formation of 4-POBN/carbon-centered linoleic acid-derived radical adducts were examined in the control reaction mixture of linoleic acid with FeCl3 at 30°C for 168 h. In the presence of 1.0 mM of the polyphenols, peak to peak heights of the third ESR signal resulted in 7.7 ± 2.4% (n = 3) (caffeic acid), 145 ± 13% (n = 3) (quinic acid), 4.4 ± 0.0% (n = 3) (chlorogenic acid), 104 ± 4.4% (n = 3) (ferulic acid), 4.3 ± 0.0% (n = 3) (noradrenaline), 12.5 ± 10.9% (n = 3) (gallic acid), 38.1 ± 7.1% (n = 3) [(+)-catechin], 47.9 ± 11.7% (n = 3) [(-)-epicatechin], 56.5 ± 1.6% (n = 3) (epigallocatechin), 13.5 ± 1.7% (n = 3) (catechol) and 83.7 ± 7.8% (n = 3) (resorcinol) of the control reaction mixture. All the compounds with catechol moiety exerted potent inhibitory effects on the radical formation except for (+)-catechin, (-)-epicatechin and epigallocatechin. (+)-Catechin, (-)-epicatechin and epigallocatechin may not exert the inhibitory effect as much possibly because they are less stable compared with caffeic acid. The resorcinol moiety in these molecules may also weaken their antioxidant activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of a Method for measuring Reactive Oxygen Radicals Levels In Vitro and Study the Effects of Vitamin C and E on Radical Production Reaction

Background: Free radicals and reactive oxygen species(ROS) are the most important factors in formation of oxidative stress reaction. Now, radical damage has been suggested to contribute to a wide variety of diseases such as Alzheimer, atherosclerosis and cancer. Transition metal ions in the presence of the various biomolecules produce these active compounds. The aim of this study is introducing...

متن کامل

Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds

Phenolic and flavonoid compounds are secondary metabolites of plants which possess various activities such as anti-inflammatory, analgesic, anti-diabetes and anticancer effects. It has been established that these compounds can scavenge free radicals produced in the body. Because of this ability, not only the plants containing phenolic and flavonoid compounds but also, the pure compounds are use...

متن کامل

Some polyphenols inhibit the formation of pentyl radical and octanoic acid radical in the reaction mixture of linoleic acid hydroperoxide with ferrous ions.

Effects of some polyphenols and their related compounds (chlorogenic acid, caffeic acid, quinic acid, ferulic acid, gallic acid, D-(+)-catechin, D-(-)-catechin, 4-hydroxy-3-methoxybenzoic acid, salicylic acid, L-dopa, dopamine, L-adrenaline, L-noradrenaline, o-dihydroxybenzene, m-dihydroxybenzene, and p-dihydroxybenzene) on the formation of 13-hydroperoxide octadecadienoic (13-HPODE) acid-deriv...

متن کامل

Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study

Objective: Phenolic compounds have been considered inhibitors of various cancers. Material and Methods: In this study, caffeic acid and gallic acid were appraised for their possible effects on apoptotic genes expression in a breast cancer cell line in vitro. We also evaluated ligand interaction and ligand binding with estrogen receptor alpha by m...

متن کامل

Caffeic acid inhibits the formation of 1-hydroxyethyl radical in the reaction mixture of rat liver microsomes with ethanol partly through its metal chelating activity

Effect of caffeic acid on the formation of 1-hydroxyethyl radicals via the microsomal ethanol-oxidizing system pathway was examined. The electron spin resonance spin trapping showed that 1-hydroxyethyl radicals form in the control reaction mixture which contained 0.17 M ethanol, 1 mg protein/ml rat river microsomes, 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone, 5 mM nicotinamide adenine dinu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2017